If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-10z-5=0
a = 3; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·3·(-5)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{10}}{2*3}=\frac{10-4\sqrt{10}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{10}}{2*3}=\frac{10+4\sqrt{10}}{6} $
| 7x+4-12x=5x-9 | | 1/6=4m+5/30 | | 2(5^3x)=31258 | | 1.77=1.7+0.7x | | 3×+y=22 | | 3^4x•3^5x=27 | | |3a+1|-11=-7 | | (2x-1)(x+3)=x+67 | | 20+x+2x=180 | | 8x-4÷3=4x+5÷2 | | 5(7-S)=-(z-9) | | a/0.3=-24 | | 39=9+5/11z | | -4+9(3+5w)w=9 | | 9(y+4)=5(y-4)M | | -(y+5)=3(y+1)-2(y-1 | | 7×(x+5)=21 | | 2(3x-1)=5(x+2)-13 | | -16t^2+96t=96 | | 0.06x=30 | | 12y-16=-21+10y | | 12c-16=-21+10c | | 14=-1/6x | | -5-(8-x)=12 | | 6x=5^(x=1) | | 24x+8=272 | | 4x+5−6x+9=x | | (n,5)=(2,3) | | 9x+6=4x+3 | | F(x)=3x2+5x-10 | | n²+8n-60=0 | | -22.32=-2.4z |